首页> 外文OA文献 >Temperature dependence of the yield shear resultant and the plastic viscosity coefficient of erythrocyte membrane. Implications about molecular events during membrane failure.
【2h】

Temperature dependence of the yield shear resultant and the plastic viscosity coefficient of erythrocyte membrane. Implications about molecular events during membrane failure.

机译:屈服剪切产物的温度依赖性和红细胞膜的塑性粘度系数。对膜破裂过程中分子事件的影响。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Structural failure of the erythrocyte membrane in shear deformation occurs when the maximum shear resultant (force/length) exceeds a critical value, the yield shear resultant. When the yield shear resultant is exceeded, the membrane flows with a rate of deformation characterized by the plastic viscosity coefficient. The temperature dependence of the yield shear resultant and the plastic viscosity coefficient have been measured over the temperature range 10-40 degrees C. Over this range the yield shear resultant does not change significantly (+/- 15%), but the plastic viscosity coefficient changes exponentially from a value of 1.3 X 10(-2) surface poise (dyn s/cm) at 10 degrees C to a value of 6.2 X 10(-4) surface poise (SP) at 40 degrees C. The different temperature dependence of these two parameters is not surprising, inasmuch as they characterize different molecular events. The yield shear resultant depends on the number and strength of intermolecular connections within the membrane skeleton, whereas the plastic viscosity depends on the frictional interactions between molecular segments as they move past one another in the flowing surface. From the temperature dependence of the plastic viscosity, a temperature-viscosity coefficient, E, can be calculated: eta p = constant X exp(--E/RT). This quantity (E) is related to the probability that a molecular segment can "jump" to its next location in the flowing network. The temperature-viscosity coefficient for erythrocyte membrane above the elastic limit is calculated to be 18 kcal/mol, which is similar to coefficients for other polymeric materials.
机译:当最大剪切合力(力/长度)超过临界值即屈服剪切合力时,就会发生剪切变形中红细胞膜的结构破坏。当超过屈服剪切结果时,膜以以塑料粘度系数为特征的变形速率流动。已在10-40摄氏度的温度范围内测量了屈服剪切产物的温度依赖性和塑性粘度系数。在此范围内,屈服剪切产物的变化不大(+/- 15%),但塑性粘度系数从10摄氏度的1.3 X 10(-2)表面泊(dyn s / cm)指数变化为40摄氏度的6.2 X 10(-4)表面泊(SP)值呈指数变化。这两个参数之间的差异并不奇怪,因为它们表征了不同的分子事件。屈服剪切的结果取决于膜骨架内分子间连接的数量和强度,而塑性粘度取决于分子片段在流动表面上彼此移动时的摩擦相互作用。根据塑料粘度的温度依赖性,可以计算出温度-粘度系数E:eta p =常数X exp(-E / RT)。此数量(E)与分子片段可以“跳”到其在流动网络中的下一个位置的概率有关。计算出高于弹性极限的红细胞膜的温度-粘度系数为18 kcal / mol,这与其他聚合物材料的系数相似。

著录项

  • 作者

    Waugh, R E;

  • 作者单位
  • 年度 1982
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号